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1 PROBLEM AND MOTIVATION

Managing resources—file handles, database connections, etc.—is a hard problem. Debugging
resource leaks and runtime errors due to resource mis-management are difficult in evolving
production code. Programming languages with static type systems are great tools to ensure
erroneous code is detected at compile time. However, modern static type systems do little in
the aspect of resource management as resources are treated as normal values. We propose
a type system, Qub, based on the logic of bunched implications (BI )[14] which models
resources as first class citizens. We distinguish two kinds of program objects—restricted and
unrestricted—and two kinds of functions—sharing and separating. Our approach guarantees
resource correctness without compromising existing functional abstractions.

For a concrete example, we consider the case of file handling. In Haskell, a file being closed
twice or a file not being closed at all may cause run-time errors but it not flagged as a type
error. We represent separating functions, i.e. functions that do not share resources with
their arguments using −∗, and sharing functions i.e. functions that share resources with their
arguments using ↠. In Qub, the type signatures of the file handling API explicitly states
that they are separating in nature. This accounts for closing the file handle more than once.
Each program object needs to be explicitly dropped if it has to be treated as a resource, as
in linear type systems [1, 2, 11]. This accounts for failing to close the file handles.
Exception handling in Haskell can be done using MonadError[10]. However, it does not

give a systematic way of cleaning up resources in case of run-time exceptions. We consider
the case where a critical section of the code throws an exception as shown in Fig. 1. The IOF
describes the fact that the computation can throw exceptions, while IO does not. The catch
function has a sharing argument, hence it can access the file handle fh declared in the part
of the code that can throw exceptions and close it before exiting to prevent a memory leak.

openFile :: FilePath −∗ IO FileHandle

closeFile :: FileHandle −∗ IO ()

readFile :: FileHandle

−∗ IOF (String, FileHandle)

writeFile :: String

−∗ FileHandle

−∗ IOF ((), FileHandle)

throw :: Exception −∗ IO a

catch :: IOF a −∗ (Exception −∗ IO a)

↠ IO a

readFromFile :: FilePath

−∗ IO (Either String String)

readFromFile fpath =

do fh ← openFile fpath

((s, fh) ← readLine fh

let l = caps s

closeFile fh

return $ Right l)

‘ catch‘ (\e → do closeFile fh

return $
Left "read file error")

Fig. 1. File and Exception Handling in Qub
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2 BACKGROUND AND RELATED WORK

Type systems based on linear logic[1–3, 11, 16] provide one technique to solve the resource
control problem. They restrict the structural rules of weakening and contraction to view all
values as resources. This changes the meaning of the connectives as well. Linear implication
A⊸ B means “A is consumed to obtain B”. We also get additive and multiplicative fragments
of conjunction (A⊗B means “both A and B” and A&B means “choose between A and B”).
There is, however, an awkward asymmetry in this system—while ⊸ is the right adjoint of ⊗,
& has no such counterpart. Logic of BI [15] repairs this asymmetry between implication
and conjunction. It uses trees as contexts, where the internal nodes are either comma (,)
or semicolon (;) and leaf nodes are the propositions. The structural rules—weakening and
contraction—are prohibited for propositions connected using (,). Γ;∆ ⊢ Γ but Γ,∆ ⊬ Γ. The
multiplicative conjunction ⊗ gets a multiplicative implication −∗ and the additive conjunction
& gets the additive implication ↠ as its right adjoint. The Curry-Howard interpretation of
BI is in terms of sharing in rather than linear logic’s consumption. If the function does not
share resources with its argument −∗ is used, while if the function shares resources with its
arguments, ↠ is used instead.
Jones[4, 8] introduces qualified types, a general framework to incorporate predicates

for polymorphism. The Hindley-Milner type system[12] extended with qualified types[5]
can express type classes with functional dependencies[7], and first class polymorphism[6].
Morris[13] uses qualified types to design Quill, a functional language with linear calculus.
In Quill, the predicate Un τ specifies the type τ is unrestricted i.e. it can be duplicated or
dropped at will, or it does not contain any resources. Proof theoretically, the type is tagged
unrestricted whenever weakening and contraction is admissible. A binary predicate ≥ helps
generalize function definition in presence of restricted types. τ ≥ τ ′ specifies that type τ
admits more structural rules than type τ ′.

3 APPROACH AND UNIQUENESS

Qub is an extension of standard call-by-name lambda calculus based on logic of BI . We
introduce two kinds of lambdas associated with the two implications. λ−∗x.M introduces a
separating function −∗, while λ↠x.M introduces a sharing arrow ↠. We generalize the use
of trees as contexts in BI to graphs of sharing information. We represent sharing graphs
as adjacency lists in the environment context. A triple (xy⃗ ∶ τ) ∈ Γ would mean x of type τ
is in sharing with y⃗. The sharing relation is a symmetric, reflexive and non-transitive. We
say that the contexts are in complete sharing—Γ�∆—if all the variables are shared and
they are disjoint—Γ⊛∆—if they are not shared. We formally define them in Fig. 2, where
# means disjoint. The predicates ShFun ϕ and SeFun ϕ range over sharing and separating
functions respectively. We include predicates Un τ and τ ≥ τ ′ as is from Quill. The complete
type system is shown in Fig. 3.

Vars(Γ, xy⃗
) = Vars(Γ) ∪ {x}

Shared(Γ, xy⃗
) = Shared(Γ) ∪ {y⃗}

Used(Γ) = Vars(Γ) ∪ Shared(Γ)

(Γ, xy⃗
)
[a↦b⃗]

=

⎧
⎪⎪
⎨
⎪⎪
⎩

a ∉ y⃗ (Γ[a↦b⃗], xy⃗
∶ τ)

a ∈ y⃗ (Γ[a↦b⃗], x(y⃗/a)∪b⃗ ∶ τ)

Γ[a⃗↦b⃗]
= (. . . ((Γ[a1↦b⃗]

)
[a2↦b⃗]

)
...
)
[an↦b⃗]

Γ⊛ Γ′ = Γ ⊔ Γ′ if Vars(Γ)# Used(Γ′) ∧ Vars(Γ′)# Used(Γ)
Γ� Γ′ = Γ ⊔ Γ′ if Used(Γ) = Used(Γ′)

Fig. 2. Auxiliary Functions



Γ⊛Δ⊛
[ID]

P ∣ xy⃗
∶ σ ⊢ x ∶ σ

P ∣ Γ⊛Δ⊛Δ ⊢M ∶ σ P ⊢Δ un
[CTR-UN]

P ∣ Γ⊛Δ ⊢M ∶ σ

P ∣ Γ�Δ�Δ ⊢M ∶ σ
[CTR-SH]

P ∣ Γ�Δ ⊢M ∶ σ

P ∣ Γ ⊢M ∶ σ P ⊢Δ un
[WKN-UN]

P ∣ Γ⊛Δ ⊢M ∶ σ

P ∣ Γ ⊢M ∶ σ
[WKN-SH]

P ∣ Γ�Δ ⊢M ∶ σ

P ∣ Γ ⊢M ∶ σ P ′ ∣ Γ′x ⊔ x ∶ σ ⊢ N ∶ τ
[LET]

P ∪ P ′ ∣ Γ ⊔ Γ′ ⊢ (let x =M in N) ∶ τ

P ∣ Γ ⊢M ∶ σ t ∉ fvs(Γ) ∪ fvs(P )
[∀ I]

P ∣ Γ ⊢M ∶ ∀t.σ

P ∣ Γ ⊢M ∶ ∀t.σ
[∀ E]

P ∣ Γ ⊢M ∶ [τ/t]σ

P,π ∣ Γ ⊢M ∶ ρ
[⇒ I]

P ∣ Γ ⊢M ∶ π⇒ ρ

P ∣ Γ ⊢M ∶ π⇒ ρ P ⊢ π
[⇒ E]

P ∣ Γ ⊢M ∶ ρ

P ⇒ ShFun ϕ P ⊢ Γ ≥ ϕ
P ∣ Γ[∅↦{x}], xVars(Γ)

∶ τ ⊢M ∶ τ ′
[↠ I]

P ∣ Γ ⊢ λ↠x.M ∶ ϕττ ′

P ⇒ ShFun ϕ
P ∣ Γ ⊢M ∶ ϕττ ′ P ∣Δ ⊢ N ∶ τ ′

[↠ E]
P ∣ Γ�Δ ⊢MN ∶ τ ′

P ⇒ SeFun ϕ P ⊢ Γ ≥ ϕ
P ∣ Γ, x∅ ∶ τ ⊢M ∶ τ ′

[−∗ I]
P ∣ Γ ⊢ λ−∗x.M ∶ ϕττ ′

P ⇒ SeFun ϕ
P ∣ Γ ⊢M ∶ ϕττ ′ P ∣Δ ⊢ N ∶ τ

[−∗ E]
P ∣ Γ⊛Δ ⊢MN ∶ τ ′

Fig. 3. Qub Type System

4 RESULTS AND CONTRIBUTIONS

Qub is a novel sub-structural λ-calculus that generalizes Curry-Howard Interpretation
of BI . We have developed a sound and complete syntax directed Qub type system and
designed a type inference algorithm based on AlgorithmM[9]. We have extended our system
to support kinds with user defined type constructors allowing programmers to define data
types with sharing and separating fields. The use of monads with sharing and separating
functions can statically detect resource errors, while expressing patterns like exceptions and
non-determinism that are difficult to capture in linear languages as described in previous
section.
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