
Denotational Semantics for Differentiable Programming

with Manifolds

Student: Jesse Sigal

Supervisors: Luke Ong & Ohad Kammar

Category: Undergraduate

Department of Computer Science
University of Oxford

1 Problem and Motivation

Differentiating a user-defined function is required in various
numerical programming situations. Examples include prob-
abilistic programming, optimisation, and gradient-based ma-
chine learning. Obtaining the derivative without any further
user effort and with complexity similar to the original func-
tion is desirable. Automatic differentiation (AD) attempts
to achieve these goals. AD can calculate the derivative and
value of a function simultaneously with only a ×3-4 slow-
down [Griewank and Walther]. The reverse mode method of
AD calculates all first-order partial derivatives of a function
linearly w.r.t. the output dimension [ibid.]. Thus, reverse
mode is ideal for high-dimension input, low-dimension out-
put functions (such as neural networks composed with a cost
function).

Smooth manifolds allow the extension of differential cal-
culus beyond standard Euclidean spaces (Rn). Optimisation
tasks can take place on manifolds, such as a circle. One such
example is fitting a periodic function to sampled data. A
function f : R → R is periodic with period p ∈ R>0 if for all
x ∈ R, f(x + p) = f(x). We can associate to f a function
f : S1 → R on the circle S1 (where each point is given by its
angle from the x-axis) by f(θ) = f(p

2π θ). The type S1 → R
is a characterisation of periodicity, and thus it is more natu-
ral to fit a function of this type to periodic data than one of
R → R. Therefore, it is highly desirable for manifolds to be
available as a data type.

AD is by no means solved. Manzyuk et al. discovered
crippling bugs in a mature and performant system which
stemmed from the interaction of higher-order functions and
AD. Their solution also lacked sufficient theory to prove cor-
rectness against [Manzyuk et al.]. I believe my ongoing work
on denotational semantics for differentiable programming is
a useful tool for proving correctness of AD.

2 Background and Related
Work

Smooth manifolds are one generalisation of Euclidean spaces
(Rn). Essentially, a smooth manifold is a space which ‘lo-
cally’ looks like Rn for some n and has enough nice prop-
erties to allow smooth functions to be defined on them. A
smooth function is a function which can be differentiated an
unbounded number of times at any point in its domain. For
example, spheres and toruses are smooth manifolds. Around
any point on a sphere or torus, if we ‘zoom in’, it is as if we
were in the plane R2.

An important object for calculus on manifolds is the Jaco-

bian. Consider a function f : Rn → Rm. We can decompose
f into fi’s defined as fi := πi ◦ f , the ith coordinate of f .
Then the Jacobian of f at x ∈ Rn is

Jxf :=

∂f1
∂x1

∣∣∣∣
x

· · · ∂f1
∂xn

∣∣∣∣
x

...
. . .

...
∂fm
∂x1

∣∣∣∣
x

· · · ∂fm
∂xn

∣∣∣∣
x

where ∂fi

∂xj
|x is the partial derivative of fi with respect to xj

at x, assuming all such partial derivatives are defined. If
each component function fi is smooth (i.e., ∂fi

∂xj1
...xjk

exists

for all sequences j1, . . . jk), Jxf is the proper analogue to
the single variable derivative. For example, the the chain
rule for multivariable functions is Jx(g ◦ f) = Jf(x)g × Jxf .
Furthermore, the best local linear approximation of a smooth
function f at a point a ∈ Rn is f(x) ≈ f(a)+(Jaf)× (x−a),
where (Jaf)× (x− a) is a matrix-vector product.

The definition of a derivative relies on the local behaviour
of a function. Because a smooth manifold M is locally Eu-
clidean, we can define an analogous concept. However, the
characterisation of a Jacobian via best linear approximation
of a smooth function uses the fact that Rn is a vector space
as matrix-vector product is used. The solution involves a
new smooth manifold TM called the tangent bundle (full ex-
planation is out of scope). The tangent bundle construction
is a functor. Thus, a smooth function f : M → N between
smooth manifolds induces a smooth function T f : TM → T N
which is the generalised Jacobian of f . The functorality of T
ensures T (g ◦ f) = T g ◦ T f (compare to the Jacobian chain
rule) and is key to my approach.

Some AD implementations can be explained by the compo-
sitionality of the Jacobian. The account by Pearlmutter and
Siskind uses compositionality to derive the multiple versions
of AD, including reverse mode. Functional programming lan-
guages such as F# and Haskell currently have useful libraries
for reverse mode AD, DiffSharp [Baydin et al.] and ad re-
spectively.

The denotational semantics of differentiable programming
is an active area of research. For example, the differential
λ-calculus [Ehrhard and Regnier], originally related to lin-
ear substitution, has models in which derivative operation
corresponds to a generalised version of differentiation [Blute
et al.]. Plotkin’s work on first-order differentiable program-
ming1,2 and Kammar, Staton, and Vákár’s work on diffeo-

1Gordon Plotkin. First-order differential programming. Domains13
talk. 2018

2Gordon Plotkin. Some Principles of Differential Programming Lan-

logical spaces3 incorporate rich data types and higher-order
types. Elliott’s work translates a Haskell program into a
Cartesian category with inbuilt AD.

My work builds on the above research in a number of im-
portant ways:

• I focus on a simple and tractable first-order language,
allowing intuitive understanding by being based off of
standard calculus.

• I integrate smooth manifolds at a base level along with a
syntax for defining and differentiating functions on man-
ifolds.

3 Results and Contributions

The main preliminary results of my ongoing work are a sim-
ple first-order programming language which allows differen-
tiation on manifolds and corresponding denotational seman-
tics. The language includes conditionals, iteration, recursion,
simple data types and manifolds as ground types, as well as
facilities for defining functions on manifolds. Thus my work
provides a guideline on how to implement a differentiable pro-
gramming language and a framework in which to prove vari-
ous properties, such as correctness of operator overloading or
source-to-source transformation techniques.

In detail, the following types can be constructed

γ := unit | G | γ1 × · · · × γn | γ1 + · · ·+ γn | T γ

where G varies over smooth manifold ground types such as
R and S1. Note that the type constructor T corresponds to
exactly to the tangent bundle mentioned previously. The syn-
tax and typing judgements of the language form a standard
functional language with the important addition of

∆ | Γ, [xi : γi] ` t : γ ∆ | Γ ` si : T γi

∆ | Γ ` ∂t

∂(x1, . . . , xn)
(s1, . . . , sn) : T γ

to allow differentiation (∆ is a function context and Γ is a
variable context). The above term differentiates t as a func-
tion of (x1, . . . , xn) at (s1, . . . , sn). Additionally, there is an
important function pγ : T γ → γ at every type which satisfies

t

∆ | Γ ` p
(
∂t

∂x
(s)

)
: γ

|

=
q
∆ | Γ ` let x = p(s) in t : γ

y

where JeK is the denotation of an expression e.
An important equivalence witnessed by the constructed se-

mantics is what we call the if-rule,

s
∆ | Γ ` ∂(if b then v else u)

∂z
(s) : T γ

{

=
s

∆ | Γ ` if (let z = p(s) in b) then
∂v

∂z
(s) else

∂u

∂z
(s) : T γ

{

which shows the derivative of the conditional is can be ig-
nored. The if-rule is often broken by implementations of AD,
for example the Haskell ad. It is a reasonable choice, however,

guages. POPL keynote. 2018. url: https : / / popl18 . sigplan .

org / event / popl - 2018 - papers - keynote - some - principles - of -

differential-programming-languages
3Matthijs Vákár, Ohad Kammar, and Sam Staton. Diffeological

Spaces and Semantics for Differential Programming. Domains13 talk.
2018

as my semantics force non-standard definitions of functions
such as < : R×R→ Bool = unit+unit, which is undefined on{

(x, x) : x ∈ R
}

.
An example of an easily expressible program is function fit-

ting of periodic data with known period. Given three periods
worth of data, we wish to fit a sine wave or triangle wave to
the data. Figure 1 shows a possible instance of the problem
with candidate models.

Figure 1: Graphs of sin(3θ) (left), three periods of random
data (center), and T (3θ) (right) on θ ∈ S1

Figure 2 is an implementation of gradient based model fit-
ting. The model is either a sine or triangle wave with param-
eters changing amplitude a and phase p. The error of a model
is the sum of the vertical distance squared between the model
and the data. The function fitter calculates the derivative
of the error with respect to the model error. The function
dM uses syntax and concepts beyond the scope of this ab-
stract, specifically d·e : (T S1 × T R + T S1 × T R) → TModel
and � : S1×R→ T S1,R×R→ T R. Intuitively, dM(m, 1, 0)
allows calculation of a derivative w.r.t the a parameter of
the models, and dM(m, 0, 1) w.r.t p. The functions stepa,p
are also not defined, but essentially return a perturbation of
their arguments in the direction given by dea,p : T R.

My work, although first-order, can be extended in a lim-
ited way to a higher-order order environment. My language
can be embedded in another functional language by way of
an EDSL. The host language would then interpret the EDSL
via my semantics where equations such as the if-rule could
provide re-write rules. However, much is gained. Often, the
advantage of higher-order functions is their ability to work on
and organise structures. Thus higher-order functions could be
used to aid in the construction of EDSL terms, allowing the
normal niceties while avoiding the hairy issue of differentiat-
ing higher-order functions. For example, the Haskell library
ad can be viewed as an EDSL, so my work could provide for-
malism to check against to avoid the type of error found by
Manzyuk et al.

4 Approach and Uniqueness

The following is a short technical description of my approach.
Currently, I have constructed the denotational semantics us-
ing an extension of the category of smooth manifolds with
partial (smooth) maps as morphisms, hereafter called C. I
then take the countable coproduct completion of C, and by
using the open subset inclusion as a system of monics, I apply
the partial map construction of Fiore to create a category pC.
The category pC contains countable coproducts and finite par-
tial products, and together they exhibit a partial distributive
structure. Following Plotkin, the partiality equips each pC-
homset an ω-cpo structure, allowing us to interpret iteration
and recursion in pC. I also show that the differential structure

type Model = R× S1 + R× S1 // Sine + Triangle

type Data = (R× S1, . . . ,R× S1) // n-tuple

// Implementation of model

impl : Model× S1 → R
def impl (model, θ) =

case model of

inl (a, p)→ a ∗ sin(3 ∗ θ + p)

inr (a, p)→ a ∗ T (3 ∗ θ + p)

// Error of model at data pair

error : Model× (S1 × R)→ R
def error (model, pair) =

let (y, θ) = pair in (y − impl(model, θ))2

// Total error of model across data

totalError : Model× Data→ R
def totalError (model, data) =

let (p1, . . . , pn) = data

in error(model, p1) + · · ·+ error(model, pn)

// Allows differentiation of a model

dM : Model× R× R→ TModel

def dM (model, da, dp) =

case model of

inl (a, p)→ dinl (a� da, p� dp)e
inr (a, p)→ dinr (a� da, p� dp)e

// Update model given derivatives

update : Model× T R× T R→ Model

def update
(
model, dea, dep

)
=

case model of

inl (a, p)→ inl
(
stepa(a, dea), stepp(p, dep)

)
inr (a, p)→ inr

(
stepa(a, dea), stepp(p, dep)

)
// Makes the model more fit w.r.t. to data

fitter : Model× Data→ Model

def fitter (model, data) =

let dea =
∂(totalError(m, data))

∂m

(
dM(model, 1, 0)

)
in

let dep =
∂(totalError(m, data))

∂m

(
dM(model, 0, 1)

)
in

update(model, dea, dep)

let data =� fixed data� in

let model0 =� initial model� in

let model1 = fitter(model0, data) in

let model2 = fitter(model1, data) in

fitter(model2, data)

Figure 2: Optimisation program for fitting periodic data. The
method used is gradient descent, with three descent steps

of the manifolds, realised through the tangent bundle functor,
is compatible with the ω-cpo structure, thus allowing the use
of derivatives.

During my ongoing summer research internship and fourth
year project, I plan to analyse how the existing methods of
implementing reverse mode AD can lead to a categorical ver-
sion. For example, as the Haskell library ad uses stateful side-
effects, I will try to add the state monad to my semantics to
create a purely categorical account of reverse mode AD. I will
also investigate to what extent inductive data types can be
added.

The main novelty of my approach is that manifolds are in-
cluded as ground types and the semantics are specified with
respect to tangent bundles. Plotkin’s work also includes oper-
ational aspects and symbolic differentiation. My work focuses
on some of the categorical structure of his work. Elliott’s
work extracts a high-level structure from AD, implements it
in Haskell with categorical ideas, relates it to existing work,
and generalises. I will try to connect my approach to his by
unifying his high-level structure with my semantics. My work
also allows nesting of derivatives internal to the constructed
category by virtue of smooth manifold structure of the tan-
gent bundle.

5 Further Directions

I plan to investigate operation semantics for my language and
prove it correct with respect to my denotational semantics.
In a similar vein, I plan to investigate which methods of im-
plementing AD can be justified with my semantics. For ex-
ample, the if-rule shifts the use of the derivative construct
‘inwards’. An operator overloading implementation could be
proven correct given enough similar rules. Additionally, ex-
tending existing AD implementations to work with smooth
manifolds appears feasible.

My work also generalises beyond automatic differentiation.
My work can be seen as a fairly limited extension of work by
Cockett and Cruttwell. Their work investigates the interac-
tion between Cartesian tangent categories and Cartesian dif-
ferential categories, and restriction structures on each (which
allowing consideration of partial maps). The first structure
is a generalisation of my approach (without coproducts) and
the second of Elliott’s. Thus I believe my language can be
interpreted with little change in a much more general setting.
I ultimately hope to create a generalised framework which
encompasses many types of automatic differentiation.

References

Baydin, A. G. et al. ‘Automatic differentiation in machine
learning: a survey’. In: arXiv preprint arXiv:1502.05767
(2015).

Blute, Richard, Thomas Ehrhard, and Christine Tasson. ‘A
convenient differential category’. In: CoRR abs/1006.3140
(2010). arXiv: 1006.3140. url: http://arxiv.org/abs/
1006.3140.

Cockett, J. R. B. and G. S. H. Cruttwell. ‘Differential Struc-
ture, Tangent Structure, and SDG’. In: Applied Categori-
cal Structures 22.2 (Apr. 2014), pp. 331–417. issn: 1572-
9095. doi: 10.1007/s10485-013-9312-0. url: https:
//doi.org/10.1007/s10485-013-9312-0.

Ehrhard, Thomas and Laurent Regnier. ‘The differential
lambda-calculus’. In: Theoretical Computer Science 309.1
(2003), pp. 1–41. issn: 0304-3975. doi: https : / / doi .

org / 10 . 1016 / S0304 - 3975(03) 00392 - X. url: http :

/ / www . sciencedirect . com / science / article / pii /

S030439750300392X.
Elliott, Conal. ‘The simple essence of automatic differentia-

tion (Differentiable functional programming made easy)’.
In: (Apr. 2018). ICFP, to appear.

Fiore, Marcelo P. Axiomatic Domain Theory in Categories of
Partial Maps. New York, NY, USA: Cambridge University
Press, 1996. isbn: 0-521-57188-x.

Griewank, A. and A. Walther. Evaluating Derivatives. Sec-
ond. Society for Industrial and Applied Mathematics, 2008.
doi: 10.1137/1.9780898717761. eprint: https://epubs.
siam.org/doi/pdf/10.1137/1.9780898717761. url:
https : / / epubs . siam . org / doi / abs / 10 . 1137 / 1 .

9780898717761.
Manzyuk, Oleksandr et al. Confusion of Tagged Pertur-

bations in Forward Automatic Differentiation of Higher-
Order Functions. Working Paper arXiv:1211.4892. 2012.
url: http://eprints.maynoothuniversity.ie/6552/.

Pearlmutter, Barak A. and Jeffrey Mark Siskind. ‘Reverse-
mode AD in a Functional Framework: Lambda the Ulti-
mate Backpropagator’. In: ACM Trans. Program. Lang.
Syst. 30.2 (Mar. 2008), 7:1–7:36. issn: 0164-0925. doi: 10.
1145/1330017.1330018. url: http://doi.acm.org/10.
1145/1330017.1330018.

