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Abstract

In this work, we show that the interaction between Generalized Algebraic Datatypes and type
classes can lead to unpleasant surprises in Haskell. We show that this issue is caused by the current
unidirectional interpretation of type class instance declarations, which means the compiler cannot make
certain deductions that seem obvious to the programmer. We propose an extension to the type system
that lets the compiler treat all instance declarations as bidirectional.
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Motivation

Consider the following Term GADT, which encodes
a simple expression language with a single “pair”
operator, similar to the example given by Johann
and Ghani [1]:

* —=> * where
a -> Term a
Term a -> Term b -> Term (a,b)

data Term ::
Con ::
Tup ::

It turns out that it is surprisingly hard to make
this data type an instance of almost any type class.
Take the Show type class for instance, which rep-
resents those types which have a canonical string
representation. Simplified for brevity, this is a def-
inition of this class:

class Show a where
show :: a -> String

It seems reasonable that Term a can be made an
instance of Show, as long as a is an instance of Show.

instance Show a => Show (Term a) where
show (Con x) =
unwords ["Con", show x]
show (Tup x y) =
unwords ["Tup", show x, show y]

However, current Haskell implementations reject
this declaration. The issue resides in the sec-
ond clause of the definition of show. In this con-
text, the type variable a must stand for a tu-
ple type, so GADT pattern matching [2] gener-
ates two fresh type variables (call them b and c,
the types of x and y respectively) as well as a
local type equality constraint a ~ (b,c). On
the right-hand side of the equation, the show

method is applied to =z and to y giving rise to
the wanted constraints Show b and Show c¢. Here
we hit a roadblock, because Show (b, ¢) does not
imply Show b nor Show ¢ in Haskell’s type sys-
tem. The standard library provides a Show instance
for pairs: instance Va. Vb. (Show a, Show b) =
Show (a,b) where ..., but this is a unidirectional
implication where the arrow points in the opposite
direction of what we need to resolve our wanted
constraints.

In this work we propose a type system extension
with the aim of improving the interaction between
type classes and GADTs by treating type class in-
stance declarations as bidirectional implications.

Background and Related Work

As the goal of this research is to improve the interac-
tion of type classes with other type system features,
a good understanding of type classes is required.
Type classes were originally introduced by Wadler
and Blott [4] as a new method to support ad-hoc
polymorphism.

The semantics of our solution is given by an elab-
oration scheme which specifies how the source lan-
guage is translated into an established intermediate
language, System F¢[3].

Approach

Our approach is inspired by the observation that
the issue in our motivating example is caused by the
unidirectionality of instance declarations. Further-
more we remark that it is easy to argue that this
unidirectionality is logically unnecessary: because
instance declarations are not allowed to overlap in
Haskell (without extensions), instance declarations
define logical bi-implications. That is, when in a



given context a certain type class constraint holds,
and this constraint matches the head of an instance
declaration, the corresponding constraints in the in-
stance context must also hold.

Extending Haskell with bidirectional type class
instances means extending the type system and the
elaboration specifications and algorithms. Extend-
ing the type system is a straightforward matter: An
instance declaration of the form instance Vb. Q =
TC T where ... gives rise to the axiom Vb. Q =
TC 7 in Haskell; under our extension this decla-
ration will also generate a list of inverse axioms

Vb. TC T = @, one for each constraint in the in-
stance context.

Extending the elaboration specification is a some-
what more involved matter. Each type class
is elaborated into a data type declaration in
our target language (System F¢), and each in-
stance declaration is elaborated into a dictio-
nary transformer. For example, under the dictio-
nary passing translation scheme, the class decla-
ration class Eq a where {(==) = a — a —
Bool} is translated into the data type declaration
data E¢D a = EqD {(==) :: a - a — Bool}. In-
stance declarations are elaborated into dictionary
transformers: instance Fq [a] where {(==) =
...} becomes eqList d = EqD {(==) = ...} One
can view such a dictionary transformer as the “im-
plementation” of a type class axiom: the trans-
former for the list instance given above can turn
a dictionary for Eq a into a dictionary for Eq [a
for any a.

In the extended system, dictionary transformers
must be provided for inverse instance axioms as
well. That is, we must be able to construct a dic-
tionary for Fq a from a dictionary for Fq [a], for
example. In order to do that, we have to store in
each dictionary the instance context dictionaries,
but this is non-trivial because the number and type
of instance context axioms varies on a per-instance-
declaration basis. This makes it seemingly impos-
sible to compose a single dictionary data type that
covers all possible instance declarations (at least not
without inspecting all instance declarations first).

However, we can attack this problem by using a
powerful System F¢ feature: open, non-parametric,
type-level functions. In addition to the dictionary
data type, our extension generates a System F ¢ type
family for each class declaration: type Fg, a. Fur-
thermore, we add a context field to the dictionary
data type, of the type F, a. Each instance decla-
ration gives rise to a System F¢ axiom, which im-
plements one of the cases of the type-level function.
For our earlier list example: axiom axFEqList a :
Fgq [a] ~ a. By type casting the element type us-
ing our new axiom, we can have our list dictionaries
explicitly store the corresponding dictionary for its

element type.
eqlistd = EqD {(==) = ...

Consider the following example of a function
which requires bidirectional instances in order to
type check:

f :: Eq [a]l] -> a -> Bool
fx=(x==x)

According to the elaboration specification of our ex-
tension, this function is elaborated into the follow-
ing System F¢ function:

fdx=(==) (ctz d > (axEqList a)) z

Let us return to our motivating example,
to explore how this extension addresses its is-
sues. Recall that our wanted constraints Show b
Show ¢ could not be resolved from the given con-
straint Show (b,c), because the Show instance
declaration for pairs provides only the axiom
Va. Vb. (Show a,Show b) = Show (a,b). In our
extension, this instance declaration would also pro-
vide the axioms Va. ¥b. Show (a,b) = Show a and
Va. ¥b. Show (a,b) = Show b, which suffices to
resolve our wanted constraints from the given con-
straint.

Results & discussion

We have specified an extension to the Haskell pro-
gramming language which lets the language treat
instance declarations as logical bi-implications.
More concretely, we have provided extensions to the
Haskell type system and elaboration specification,
as well as to type checking and elaboration algo-
rithms. In our work, we argue that our extension

e climinates some unpleasant surprises caused
by the interaction between type classes and
GADTs

e is fairly easy to implement, at least for compil-
ers which already use System F¢ as intermedi-
ate language (such as GHC)

e is entirely conservative: we argue that all pro-
grams written in unextended Haskell will also
type check and compile under our extension
with the same semantics

A downside of our proposal is that it is incom-
patible with extensions which allow instance
declarations to overlap. For programs with
overlapping instance declarations, an imple-
mentation of our specification may produce un-
sound System F¢ code.

, ctx = d>sym (axEqList a)}
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