
Resource-guided Program Synthesis
Tristan Knoth

tknoth@eng.ucsd.edu
UC San Diego

Advisor: Nadia Polikarpova

Introduction
In recent years, program synthesis has emerged as a promising technique for automating low-level aspects of
programming [2, 19, 20]. Automatically optimizing program performance has long been a goal of synthesis, as
real-world developersmust takemore than just the correctness of their code into account during the development
process. Several existing techniques tackle this problem for low-level programs of restricted form [18, 15].
However, recent systems for the synthesis of high-level looping or recursive programs manipulating custom
data structures do not take performance into account, instead simply returning the first program that satisfies
the functional specification [12, 13, 1, 16, 10, 17]. Modern synthesis algorithms lack the means to analyze and
understand the resource needs of these high-level programs. As a result, synthesized programs are prone to be
inefficient, requiring the intervention of experienced developers to tune their performance.

In this work, we study the problem of program synthesis given both a functional specification of a program
and a bound on its resource usage. Since both verification and synthesis are very expensive, we propose
resource-guided synthesis: an approach that tightly integrates program synthesis and resource analysis, and
uses the resource bound to guide the synthesis process, generating programs that are efficient by construction.

As an example, consider the programs in Fig. 1, both returning the intersection of two sorted lists. The
implementation on the left, synthesized from a refinement-type specification by Synquid [16], is concise yet
runs in quadratic time. Our technique guides the synthesizer to instead find the longer, yet linear-time,
implementation shown on the right.

Our primary insight is that program synthesis via round-trip type checking, pioneered by the Synquid
synthesizer [16], provides an extensible framework for type-directed synthesis. This allows us to leverage the
existing body of work on resource type systems when incorporating resource analysis into the synthesis process
[8, 4, 6, 14, 13, 16]. The main technical contribution of this project is a novel bidirectional type system, Re2 (for
refinements and resources), allowing users to simultaneously specify both functional properties and resource
bounds. We show how to then transform this bidirectional system into a synthesis algorithm, and use it to
implement ReSyn, capable of synthesizing efficient functional programs.

The Re2 Type System
Re2 draws its inspiration primarily from Automatic Amortized Resource Analysis (AARA), an automated
technique for deriving symbolic resource bounds on functional programs [9, 11, 3, 5]. Like AARA, Re2 is affine
in order to ensure that it infers strict upper bounds on resource usage.

AARA utilizes potential functions that map program states to non-negative numbers. To derive a bound,
one must statically ensure that the potential at every program state is sufficient to cover the cost of the next
transition and the potential of the subsequent state. Then, the top-level potential is an upper bound on the
program’s cost. To automate the technique, AARA uses template potential functions with a priori unknown
coefficients, solved for by generating a system of linear constraints. [7, 5].

AARA is an excellent candidate for use in a program synthesizer, as the verification process is completely
automated and it generates decidable and efficiently solvable constraints. However, AARA does lack two key
features vital for working alongside a refinement type system to specify and verify general-purpose functions:

Polymorphism: Much of the expressive power and flexibility of refinement types comes from polymor-
phism, as it enables higher-order reasoning, and allows users to provide general-purpose components to the
synthesizer. Polymorphic types also make the analysis compositional in a way that RAML’s is not. For
example, consider the following function that appends three lists:

append3 =λ xs . λ ys . λ zs . append xs (append ys zs)

To analyze the above, RAML will conduct a whole-program analysis and consider the body of append twice.
Since Re2 is polymorphic, append can have a single type signature that is instantiated twice with different

1 common l1 l2 = match l1 with

2 Nil → Nil

3 Cons x xs →
4 if ¬(member x l2)

5 then common xs l2

6 else Cons x (common xs l2)

1 common l1 l2 = match l1 with

2 Nil → Nil

3 Cons x xs → match l2 with

4 Nil → Nil

5 Cons y ys → if x < y

6 then common xs l2

7 else if ts y < ts x

8 then common l1 ys

9 else Cons x (common xs ys)

Figure 1: Two synthesized programs that collect common elements between two sorted lists; a short solution
from Synquid (left) and an efficient solution from ReSyn (right).

resource demands, making the analysis more modular and generating a smaller system of constraints than
RAML would.

To support polymorphism we annotate type variables with multiplicities in the tradition of linear logic.
We can then perform potential-preserving type substitution, and thus compose resource bounds in a way that
AARA could not.

Dependent annotations: Users should be able to express resource bounds with respect to variables and
other program expressions used to specify functional properties. For example, analyzing the resource usage
of a simple function like replicate :: n: Nat → x: a → {List a | elems ν = [x] ∧ len ν = n}, which returns a
list of n copies of some expression x, is outside the scope of AARA. However, Re2 should be able to reason
about dependent annotations, so we allow potential annotations ranging over linear combinations of program
expressions.

As an example Re2 specification, consider the following resource-annotated type signature for common, a
function returning the intersection of two lists:

common :: l1: IList {a | | 1} → l2: IList {a | | 1} 1−→ {List a | elems ν = elems l1 * elems l2}

common’s type signature specifies a number of properties, both functional and resourceful:

• Both input lists are sorted – the IList type, while elided here, includes an invariant asserting that the
head of the list is bounded above by every element in the tail.

• The function’s return type asserts that the set of elements in the output list is the intersection of the
elements of the two input lists (denoted with *).

• Any call to common incurs a cost of “1”, indicated by the annotation on the function arrow. Here, the
resource in question is simply recursive calls.

• Every element in the input lists carries a single unit of potential, indicated by the “1” annotation on the
type variables. This essentially gives us enough potential to pay for one recursive call per element in each
input list. A valid common implementation could make at most |l1|+ |l2| recursive calls according to this
specification.

Given annotations of this form, checking resource bounds with Re2 reduces to solving a system of quantified
linear arithmetic expressions. Our syntax-directed typing rules generate constraints asserting that the context
has enough potential to pay for every operation. In most cases, we can solve the system directly with a single
solver query. However, when the resource bounds include program expressions, Re2 generates exists-forall
constraints, asserting that there exists a program expression greater than or equal to the relevant cost for all
possible inputs. Solving constraints of this form is notoriously difficult, and in fact amounts to a separate
program synthesis problem all together [19]. We solve the system with a standard counterexample-guided
inductive synthesis (CEGIS) loop, which in practice is not too costly since the desired expressions are restricted
to linear combinations of program terms.

From Verification to Synthesis with ReSyn
Like Synquid, we turn our bidirectional Re2 rules into a round-trip system by propagating additional type
information during the inference phase of the bidirectional system. This allows us in turn to implementReSyn

on top of Synquid’s synthesis engine. [16].
In its current state, ReSyn can analyze linear resource bounds, and on our benchmark suite, finds a

linear-time implementation of every function for which Synquid could not. ReSyn is slightly slower than
Synquid, which is unsurprising given the additional constraint-solving burden and slightly reduced search
pruning. However, ReSyn massively outperforms naive approaches to the problem, and is the first high-level
general-purpose program synthesizer that can reason about resource usage.

The primary technical challenge in program synthesis from Re2 specifications is optimizing the search pro-
cess after relaxing the assumptions upon which Synquid relied. For example, consider the issue of synthesizing
a conditional. Rather than naively enumerating all branching expressions, Synquid instead searches for terms
assuming some “condition unknown” C. Given a valid term, Synquid then searches for the weakest possible
valuation for C under which the expression verifies.

Having found an expression and a guard condition, it is straightforward to convert the condition into a
program expression and continue to synthesize the other branches.

The process, called condition abduction, is not so simple under Re2, however, as condition abduction
implicitly assumes that the order of checking premises does not matter. Since Re2 is affine, each step of the
type checking process can affect the context. In Re2, to check a conditional expression, we first check the
guard and then use the resulting context to check each branch, ensuring that the top-level context contains
enough potential to execute the guard followed by any of the branches. Thus, the order in which we synthesize
expressions in a branching term matters under Re2, while in Synquid it did not. In ReSyn, we extend
condition abduction to our substructural type system by re-checking certain expressions. For example, suppose
we synthesize an expression e from a context Γ. If e only checks under a condition C, we then generate the
guard expression g in Γ again, leaving behind the context Γ′. We must then re-check Γ′ ` e in order to ensure
that the context has enough potential to evaluate g and e. We can then proceed to generate the remaining
branches in Γ′.

Synquid also assumes that any expression that type checks will appear in the final program, perhaps behind
a guard. In ReSyn, this is no longer true, as it might synthesize an expression with the desired functional
properties, but where any program containing said expression exceeds the resource budget. Thus, ReSyn
must often explore possible programs that Synquid never did, often again hurting its performance relative to
Synquid’s.

References
[1] Feser, J. K., Chaudhuri, S., and Dillig, I. Synthesizing data structure transformations from input-

output examples. In Programming Language Design and Implementation (PLDI) (2015).

[2] Gulwani, S., Harris, W. R., and Singh, R. Spreadsheet datamanipulation using examples. Commun.
ACM 55, 8 (Aug. 2012), 97–105.

[3] Hoffmann, J. Types with Potential: Polynomial Resource Bounds via Automatic Amortized Analysis.
PhD thesis, Ludwig-Maximilians-Universität München, 2011.

[4] Hoffmann, J., Aehlig, K., and Hofmann, M. Multivariate Amortized Resource Analysis. In 38th
Symp. on Principles of Prog. Langs. (POPL’11) (2011), pp. 357–370.

[5] Hoffmann, J., Aehlig, K., and Hofmann, M. Multivariate Amortized Resource Analysis. In 38th
Symposium on Principles of Programming Languages (POPL’11) (2011).

[6] Hoffmann, J., Aehlig, K., and Hofmann, M. Resource Aware ML. In 24rd International Confer-
ence on Computer Aided Verification (CAV’12) (2012), vol. 7358 of Lecture Notes in Computer Science,
Springer, pp. 781–786.

[7] Hoffmann, J., and Hofmann, M. Amortized Resource Analysis with Polynomial Potential. In 19th
European Symposium on Programming (ESOP’10) (2010).

[8] Hoffmann, J., and Hofmann, M. Amortized Resource Analysis with Polynomial Potential - A Static
Inference of Polynomial Bounds for Functional Programs. In In Proceedings of the 19th European Sym-
posium on Programming (ESOP’10) (2010), vol. 6012 of Lecture Notes in Computer Science, Springer,
pp. 287–306.

[9] Hofmann, M., and Jost, S. Type-Based Amortised Heap-Space Analysis. In 15th Euro. Symp. on
Prog. (ESOP’06) (2006), pp. 22–37.

[10] Inala, J. P., Polikarpova, N., Qiu, X., Lerner, B. S., and Solar-Lezama, A. Synthesis of
recursive ADT transformations from reusable templates. In Tools and Algorithms for the Construction
and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I (2017), pp. 247–263.

[11] Jost, S., Hammond, K., Loidl, H.-W., and Hofmann, M. Static Determination of Quantitative
Resource Usage for Higher-Order Programs. In 37th ACM Symp. on Principles of Prog. Langs. (POPL’10)
(2010), pp. 223–236.

[12] Kneuss, E., Kuraj, I., Kuncak, V., and Suter, P. Synthesismodulo recursive functions. InOOPSLA
(2013).

[13] Osera, P., and Zdancewic, S. Type-and-example-directed program synthesis. In PLDI (2015).

[14] Peng Wang, Di Wang, A. C. Timl: A functional language for practical complexity analysis with
invariants. In OOPSLA (2017).

[15] Phothilimthana, P. M., Thakur, A., Bodík, R., and Dhurjati, D. Scaling up superoptimization.
In Proceedings of the Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016 (2016), pp. 297–310.

[16] Polikarpova, N., Kuraj, I., and Solar-Lezama, A. Program synthesis frompolymorphic refinement
types. In Programming Language Design and Implementation (PLDI) (2016), pp. 522–538.

[17] Qiu, X., and Solar-Lezama, A. Natural synthesis of provably-correct data-structure manipulations.
PACMPL 1, OOPSLA (2017), 65:1–65:28.

[18] Schkufza, E., Sharma, R., and Aiken, A. Stochastic superoptimization. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20,
2013 (2013), pp. 305–316.

[19] Solar-Lezama, A. Program sketching. STTT 15, 5-6 (2013), 475–495.

[20] Torlak, E., and Bodík, R. A lightweight symbolic virtual machine for solver-aided host languages.
In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edin-
burgh, United Kingdom - June 09 - 11, 2014 (2014), p. 54.

