
1

Speeding up Type-Driven Program Synthesis with

Polymorphic Succinct Types

ZHENG GUO, University of California, San Diego, USA

1 INTRODUCTION

Several component-based program synthesis techniques [1, 4] rely on deductive reasoning to reduce
the search space. While effective for many interesting programs, these techniques scale poorly
with the number of given components and the depth of the program (i.e. the height of its AST). In
this project, we explore an approach to improving the scalability of type-driven synthesis [4] by
ruling out useless components, whose argument types are known to be uninhabited. Unfortunately,
type inhabitation is undecidable in the presence of polymorphism, because the set of reachable
types in a finite type environment can be infinite. To address this problem, we abstract the actual,
fine-grained types of components into coarse-grained succinct types, a concept we borrow from
InSynth [2].

We extend succinct types to support both datatypes and polymorphism, which requires a novel
notion of unification between succinct types. Then, we can compute the over-approximation
of type reachability, exclude components with unreachable argument types and build the type
transfer graph (TTG), which summarizes how to construct a term of a given type from terms of
other types [2]. We apply this abstraction to Synqid [4], a state-of-the-art type-driven program
synthesis tool. The evaluation results indicate that our approach efficiently prevents enumeration
of useless components in Synqid’s bottom-up term exploration phase [4].

2 POLYMORPHIC SUCCINCT TYPES

Succinct types were proposed in InSynth [2] as an abstraction over simple types, which ignores
the order of function arguments and removes the duplicates. This idea is generalized to refinement
types in Synqid [4] by abstracting all refinements to true.1 For example, consider the following
component

eq :: x : Int → y : Int → {Bool|ν == (x == y)}

has the succinct representation
eq::{Int} → Bool

which indicates that eq enables us to construct a Bool term, as long as we can construct an Int
term. To generalize succinct types to ML-style polymorphism, we extend their syntax as follows:

tα ::= ∀{α1,α2, . . . ,αk }.ts type schema
ts ::= {ts , ts , . . . , ts } → tr function
td ::= DT � {ts , ts , . . . , ts } datatype
tr ::= Bool | Int | α | td function return type

For polymorphic types, we abstract over the order of bound type variables, similarly to how the
original succinct types ignore the order of function arguments. And we design succinct datatypes
as the composition of two parts: the outermost datatype and other types. Consider the following
component

delete :: t : BST α → x : α → {BST α |elems ν == elems t − [x]}

1We leave the abstraction of refinements into coarse-grained representations to our future work.

Author’s address: Zheng Guo, University of California, San Diego, CA, 92092, USA, zhg069@ucsd.edu.

ACM Trans. Web, Vol. 9, No. 4, Article 1. Publication date: July 2018.

1:2 Zheng Guo

This component contains both polymorphism and datatypes. We represent it concisely by extracting
all the type variables and decomposing the datatypes as follows:

delete :: ∀{α }. {α, BST � {α }} → BST � {α }

This definition enables us to abstract infinite sets of types into finite sets of succinct types. For
example, with the polymorphic datatype List α and a ground type Int, we are able to construct
infinitely many types: List (List Int), List (List (List Int)), List (List (List
(List Int))), etc. However, in our representation all these types have the same abstration as
List � {List, Int}.
Every ML-style type τλ can be converted to a succinct type tα using a conversion function

σ : τλ → ts , which is defined as follows:

σ (Bool) = Bool,σ (Int) = Int primitive
σ (∀α1. . . .∀αn .τα) = ∀{α1 . . . αn}. σ (τα) type schema
σ (τ1 → τ2) = {σ (τ1)} ∪Arд(σ (τ2)) → Ret(σ (τ2)) function
σ (D) = D � ∅ datatypes without type variables
σ (τDT τ) = Out(τDT) � (Out(σ (τ)) ∪Tys(σ (τ)) ∪Tys(σ (τDT))) datatypes with type variables

where

Arд({t1, t2, . . . , tn} → tr) = {t1, t2, . . . , tn} Ret({t1, t2, . . . , tn} → tr) = tr

Out(outerDT �Ts) = outerDT Tys(outerDT �Ts) = Ts

3 CASE STUDY: PRUNING COMPONENTS IN SYNQUID

We study this type system by applying it to the bottom-up term exploration phase in Synqid.

Constructing TTG. With the abstraction of provided components as succinct types, the first phase
of bottom-up term exploration in Synqid is to calculate the set of types which are reachable to
our synthesis goal type. For example, if our synthesis goal is the function delete above, the user
provides us these components:

Nil::List α

Cons::x:α → xs:List α → List α

add::x:Nat → y:Nat → {Int|ν == x + y}

toBST::xs:List α → s:Nat → {BST α|elems xs == telems ν && size ν == s}

We may construct the TTG as Figure 1. Each edge from T1 to T2 in this graph indicates that to
construct a term with succinct type T2 we need a term with type T1. And there is an edge from a
source node to T if there is a variable with type T in the current scope. We say a type is reachable
if there exists a path from any source node to the goal type containing this type in the graph.
By evaluating the reachability, we are able to rule out components containing unreachable types.
In this case, the type Int, Bool, List� {α } turns out to be unreachable, so the edges named
toBST, eq, Cons, Nil would be pruned from the graph and therefore these components would
be excluded from the following term exploration.
To formalize this idea, we propose a unification algorithm between succinct types. Let S T

denote type T is reachable from type S and the reachability rule in InSynth [2] is modified as
follows:

T
Γ
? unify(T ,R) = δ S → R ∈ Γ Arд(R) = ∅

Match
δS

Γ
T

ACM Trans. Web, Vol. 9, No. 4, Article 1. Publication date: July 2018.

Speeding up Type-Driven Program Synthesis with Polymorphic Succinct Types 1:3

BST � {α }

BST � {α }, α

α

List � {α }, Int

List � {α }

Int

List � {α }, α

Bool

delete

toBST

eq

Cons
x

Nil

t

Fig. 1. Type transfer graph example. Double-lined ellipse nodes for the goal type, rectangle nodes for set of

succinct types, single-lined ellipse nodes for single succinct type and solid dots for variables in scope. Dashed

lines for pruned edges in the graph.

According to this rule, if we have a succinct component type S → R, and the type T and R can be
unified under substitution δ , type T is reachable from the substituted type set δS . Then an edge
from δS to T is added to the TTG.

Using TTG. Once the TTG is constructed, we perform term exploration by walking the graph,
starting from the node that abstracts the goal type. We employ two further optimizations to speed
up the search. First, we use the A* algorithm to reach complete terms faster [3]. Our second
optimization is concerned with condition abduction [4]: after one branch of a conditional has been
successfully synthesized, unlike Synqid, we resume the exploration of the other branch from
where the first one left off, instead of restarting from scratch.

4 EVALUATION

The original Synqid benchmarks [4] use a minimal set of components. To evaluate the scalability
of Synqid as the number of components increases, as well as the effect of our technique, we
developed two additional benchmarks, which introduce useless components, and then increase the
depth of the program to be synthesized or the number of components. As shown in Figure 2, with
the solution depth increasing, the number of component combinations grow exponentially, and
therefore running time of pure term exploration in Synqid grows drastically while our method
takes almost the same time for all the depths.

On the other hand, Figure 3 confirms the benefits of our method in search space reduction, where
the increase in number of components makes less difference in our method than that in Synqid.
This result also shows that our method takes extra time to build the graph before term exploration,
but the overhead is small in our benchmarks, although it would be more significant as the number
of components increases. We also add extra components to other benchmarks of Synqid and the
result is shown in Table 1. For most of the benchmarks with extra components, both the baseline
Synqid and our method waste time trying some of the useless but reachable components. Notice
that there are still some benchmarks such as list partition and BST delete that work better that
the baseline, and this is likely due to resuming the search when switching between branches. To
conclude, our method performs similarly to Synqid on simple benchmarks and significantly better
on benchmarks with many useless component combinations.

ACM Trans. Web, Vol. 9, No. 4, Article 1. Publication date: July 2018.

1:4 Zheng Guo

Fig. 2. Evaluation on depth benchmarks
Fig. 3. Evaluation on component number benchmarks

Description Tmin (s) Tst (s) Tsq (s)
Make address book 1.36 8.39 10.14
Insert into binary heap 1.3 1.21 1.83
Delete node from BST 9.42 4.46 13.08
Merge two sorted lists 4.41 3.83 9.21
Delete value from a list 0.71 0.81 0.87
Is list empty 0.61 0.69 0.67
List partition 17.57 12.60 63.48
List replicate 0.51 0.76 0.99
Duplicate each element in a list 0.61 0.80 0.94

Table 1. Running time on Synquid benchmarks with minimal set of components in baseline Synquid(Tmin),

with extra components in our method(Tst) and with extra components in baseline Synquid(Tsq).

REFERENCES

[1] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York, NY, USA, 422–436. https:
//doi.org/10.1145/3062341.3062351

[2] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013. Complete Completion Using Types and Weights.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13).
ACM, New York, NY, USA, 27–38. https://doi.org/10.1145/2491956.2462192

[3] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating Search-based Program Synthesis Using
Learned Probabilistic Models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2018). ACM, New York, NY, USA, 436–449. https://doi.org/10.1145/3192366.3192410

[4] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement
Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’16). ACM, New York, NY, USA, 522–538. https://doi.org/10.1145/2908080.2908093

ACM Trans. Web, Vol. 9, No. 4, Article 1. Publication date: July 2018.

https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/2908080.2908093

	1 Introduction
	2 Polymorphic Succinct Types
	3 Case Study: Pruning components in Synquid
	4 Evaluation
	References

